Wow. The algorithm just took a little bit of pacing to realize, but I’ve gone through several refinements and variations of the implementation.
First our triangle as a string for parsing.
let tstr = "75 95 64 17 47 82 18 35 87 10 20 04 82 47 65 19 01 23 75 03 34 88 02 77 73 07 63 67 99 65 04 28 06 16 70 92 41 41 26 56 83 40 80 70 33 41 48 72 33 47 32 37 16 94 29 53 71 44 65 25 43 91 52 97 51 14 70 11 33 28 77 73 17 78 39 68 17 57 91 71 52 38 17 14 91 43 58 50 27 29 48 63 66 04 68 89 53 67 30 73 16 69 87 40 31 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23"
Our first solution is imperative.
let problem18c = //parse let tarr = Array2D.create 15 16 0 //make first column filled with zeros so no out of bounds checks required tstr.Split('\n') |> Array.iteri (fun i row -> row.Split(' ') |> Array.iteri (fun j cell -> (tarr.[i,j+1] <- (cell |> int)))) //calc for i in 1..14 do //start with second row for j in 1..i+1 do //shift orientation to right tarr.[i,j] <- (max tarr.[i-1,j-1] tarr.[i-1,j]) + tarr.[i,j] //find largest let mutable largest = 0 for j in 0..14 do largest <- max largest tarr.[14,j] largest
Our second solution uses a nicer recursive functional algorithm for computing the answer, but uses (nearly) the same parsing algorithm and array. It would be nicer to work with a tree structure, but string.Split is just too easy.
let problem18d = let tarr = Array2D.create 15 15 0 tstr.Split('\n') |> Array.iteri (fun i row -> row.Split(' ') |> Array.iteri (fun j cell -> (tarr.[i,j] <- (cell |> int)))) let rec find (row,col) = if row = 14 then tarr.[row,col] else (max (find (row+1,col)) (find (row+1,col+1))) + tarr.[row,col] find (0,0)
No comments:
Post a Comment